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Mitch Gail

9.1 Introduction

Whether an endpoint S is a good surrogate for a true clinical endpoint
T depends on the intended use of the surrogate. Our primary goal is to
use a surrogate in a clinical trial to estimate the trial-level effect of a new
treatment on T without having to measure 7. Another possible use of a
surrogate is to predict the outcome T on an individual patient.

For clinical management of an individual patient, it would be valuable if
S could be used to predict that individual’s outcome T reliably, regardless
of what treatment, Z, or other covariates, X, might be present. This as-
sumption that T be conditionally independent of Z (and X) given S is the
essential component in Prentice’s (1989) criteria that define a good surro-
gate for hypothesis testing. This assumption holds if S is on the sole causal
pathway leading to T, and all factors that influence T do so only through
their effects on S. Although this strong assumption and ancillary conditions
guarantee the validity of hypothesis tests for no treatment effect, they do
not insure that S can predict T well at the individual level. Instead, Buyse,
Molenberghs, Burzykowski, Renard, and Geys (2000a), which we abbrevi-
ate BMBRG, propose the within individual squared correlation, RZ ,. = of
T on S as a measure of the adequacy of S for predicting an individual’s
outcome (see also Chapter 7).

If S could be shown to satisfy the conditional independence assumption
and to have a high R2 . | one would have powerful evidence for a causal
biological role for S and its close biological connection to 7. Moreover, one
could hope not only to test for treatment effects on T based on those on S,
but also to estimate treatment effects on T from those on S. For example,
suppose one wishes to estimate § = E(T|Z = 1) — E(T|Z = 2) where
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Z = 1 corresponds to an experimental treatment and Z =2 to a control or
standard treatment, possibly a placebo. We assume Z =1 or 2 is assigned
at random with equal probability. Suppose a previous study on control
subjects has been done that yields an estimate of the density f(T|S,Z =
1, X) that equals f(T'|S) by the conditional independence assumption. In
the new study population

5= /tf(t|s)h(s|Z = 1,2)dG(z)dt — /tf(tls)h(SIZ = 2,z)dG(z)dt,

where h(s|z,z) is the conditional density of S given Z and X, and G(z)
is the distribution function of X. Because f(t|s) is assumed known from
previous studies on (7T, S) and because h(s|Z = 2,z) and h(s|Z =1, z) are
estimable from the current study using the surrogate endpoint only, one
can calculate the effect of the treatment Z on 7' in this new study without
measuring the true clinical endpoint T'.

All this depends on the strong conditional independence assumption THZ,
X given S, however. It is impossible to verify this assumption empirically,
because one would need to examine an infinite number of treatments and
covariates. Even for a single study and treatment comparison, there is lim-
ited ability to rule out a dependence of T' on Z given S with regression
methods, leading Freedman, Graubard, and Schatzkin (1992) and Lin et
al. (1997) to explore the related criterion of percentage of the treatment
effect explained (see Chapter 5 for a discussion of this criterion and al-
lied concepts). But without conditional independence, some other basis is
needed to attain the central goal of estimating the magnitude of the treat-
ment effect on 7' in a new trial from data on S only.

The meta-analytic approach to evaluating surrogate markers, introduced by
Daniels and Hughes (1997) and BMBRG, leads to an empirical assessment
of how well a surrogate can be used to estimate trial-level treatment effects
on T. The basic idea is that one can use information from previous similar
studies in which both T and § are measured in treated (Z = 1) and control
(Z = 2) groups to learn how well the treatment effect on T is predicted by
outcomes S in the treated and control groups. In a trial of a new treatment
similar to those in the previous studies, one measures only the effects of Z
on S and uses data from the previous studies and from the results on S in
the new study to estimate the effects of Z on T

In order to carry out this program, one needs to posit a superpopulation of
similar trials from which the new trial and the previous trials are drawn.
For example, Daniels and Hughes (1999) studied various retroviral thera-
pies against HIV/AIDS. In some applications it may be unclear whether
the new trial with its new experimental treatment is similar enough to pre-
vious studies and their treatments to regard it as a sample from the same
superpopulation of trials. Even if there is agreement on the class of similar

9. Extensions of the Meta-analytic Approach to Surrogate Endpoints 145

trials, a serious practical limitation may be the small number of previous
trials with data on T and S. One relies on superpopulation parameters
which reflect trial to trial variation, in order to infer trial-level treatment7
effects on 7" from those on S. Having too few previous trials limits the pre-
cision with which superpopulation parameters can be estimated and hence
the precision of meta-analytic inference (Gail, Pfeiffer, van Houwelingen
and Carroll 2000, which we abbreviate GPHC). ,

A second meta-analytic issue concerns the degree to which models describe
the joint distribution of T and S at the individual level. Chapters 7 and
1014 in this book present such detailed models. GPHC describe a mar-
ginal approach in which the distributions of S given Z, and T given Z, are
modeled separately. They argue that this approach allows great flexibility
for describing trial-level treatment effects and avoids having to specify the
joint distribution of T and S given Z, which may be poorly understood. The
marginal approach also captures most of the available information about
trial-level treatment effects. Tibaldi et al. (2003) show that estimates of the
proportion of variability in the estimated trial-level treatment effect that .
is explained by the surrogate, RZ,, is almost identical for marginal (“uni-
variate”) and bivariate linear models, as discussed further in Section 9.3.

In Section 9.2 we illustrate these concepts for normal models for S and 7T, in
Section 9.3 we discuss the flexibility of the marginal model approach, and in
Section 9.4 we recount some potential practical and theoretical limitations
of the meta-analytic approach.

9.2 The Normal Model

Many of the previous ideas are illustrated by the normal model. Let 7},
denote the true clinical response of patient j (j = 1,2, .. .) in trial ¢ 01]1
treatment Z = z (z = 1 or 2) and define S,;; similarly for the surrogate.
Here j ranges from 1 to n; for Z = 1 and from 1 to m, for Z = 2. Given
Gi = (GlTj B 915]. s 62Tj s 925]. )T, the vector (Tlij: Slij; Tgij, ng,j)T, is normally
distributed with mean 6; and variance-covariance matrix ;, which is block
diagonal with non-zero components ¥y1; and Yoo, corresponding respec-
tively to (T145, S14;)7 and (T, S2:;)T, which are independent. The 8; come
from a normal superpopulation with mean u and variance ¢. This model
is very similar to that of BMBRG except that it allows for $1y; # Yoo;

whereas BMBRG require X11; = Zog;. ’

A series of N “previous” trials permits one to estimate the parameters of
the superpopulation, 4 and ¢. Within the sth such trial, the mean is esti-
mated as 6; = (T, S14, T, S2:)T, where, for example, T}; = ni_l Zj Tiig-
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The quantities £;1; and Xyy; are estimated from the within-trial empirical
variance-covariance matrices of (715, S15;)T and (T2iz, S2i;)T, respectively.
Because 6; is normally distributed with mean p and variance-covariance
matrix ¢ + ¥;, various methods such a maximum likelihood, REML or
empirical Bayes can be used to estimate p and ¢.

Now suppose we consider a new trial (i = 0) drawn from the superpopu-
lation and only get to observe (S105, S205), which have within trial compo-
nents of variance o9 from X1; and caq0 from Tog;. We seek to estimate
o and especially the components that correspond to the unmeasured clin-
ical outcomes T'. Let 619 = (8170, f270)7 be the means of T1o; and Ty,
respectively, and let 950 = (9150,9250)T be the means of Sle and Son,
respectively. Because (6%,,0%,)7 is multivariate normal, the conditional
mean and variance of 619 can be expressed in terms of 6y and parameters
Y = (p, ¢, 0220, 0140). Indeed, letting D and W be known matrices defined
so that 09 = Dby and g9 = Wy (see Section 2 of GPHC for details),

E(fr0 | 8s0) = Dy + DWW (¢ + Zo)WT] ™} (650 — W) (9.1)
and
Cov(9r0 | 50) = DD” — DDT W (¢ + Z)WTI'WéDT,  (9.2)

where (9.1) and (9.2) only depend on the elements ¢ and o440 of Xg.
The variances o229 and o449 can be estimated from the empirical variances
of S10; and Syoy, respectively, and p and ¢ can be estimated from the
previous trials. Assuming the elements of i are known, one knows the
distribution of the means of the unmeasured true clinical outcomes 0719 from
the conditional normal distribution defined by (9.1) and (9.2). In particular,
for R = (1,—-1), one can calculate the distribution of the treatment effect
do = Rbo = 0170 — 20, which is normal with mean M(y)) = RE(910 | 9s0)
and variance V(¢) = R cov(f7g | §50)RT, which can be calculated easily
from (9.1) and (9.2).

If no measurements on the surrogate were available in the new study, but
if the parameters of the superpopulation were known without error from
many similar previous studies, one could still estimate the new treatment
effect as pyp — por, with variance RD$DT RT. The proportion by which
this variance is reduced by measuring the surrogate in the new study is,
from equation (9.2),

R2  _ BDOWTIW (¢ + Zo)WT]'W¢DTRT
trial RDd)DTRT .

(9.3)

If 0920 and o440 are negligible, so that ¥ is omitted from (9.3), this de-
finition of RZ,, reduces to that given by BMBRG. BMBRG propounded
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the version of RZ | (with £y = 0) as a measure of the adequacy of the
surrogate S at the trial level.

The difference 6y = 6,19 —B8370 is a natural measure of treatment effect, but ‘
the distribution of an arbitrary treatment effect function 80 = (6170, 02770)
can be obtained analytically or by _simulating from the conditional normal
distribution of By given ¢ and fg9. An estimate of dp might be 4, =
(5[E(91T0[1[),950),E(92T0‘1j),950)], and confidence intervals could be based
on the quantiles of the distribution of do given v and 550.

9.2.1 Precision of Estimates of 8¢ Based on the
Meta-analytic Approach

Using the surrogate to estimate the true treatment effect dg can lead to
severe loss of precision compared to measuring T' directly. Even if a large
number of previous trials have been conducted so that © and ¢ are known
without error, and even if the sample size in the new trial on the surrogate
tends to infinity, so that gqgy = 0440 = 0, there is irreducible variability
in 6o that reflects trial-to-trial variation in 8; in the superpopulation, as
quantified by ¢. For example, with &, = Rf7q defined as above, the variance
of 90 is
RD$DTRT — RDSWT (WoWT)~'W¢DTRT,

which is strictly positive unless 017; and 07, are linearly dependent on 6, g;
and 6,g;. In contrast, measuring true endpoints 7" will yield an estimate of
o with variance tending to zero.

A realistic assessment of the variability of §0 also needs to acknowledge un-
certainty in 7 and ¢, the estimates of superpopulation parameters. GPHC
considered a 95% confidence interval on dg = 0170 — Bo7g. A naive 95%
confidence interval that assumes known Y = (14,0, 0200, 0440) is M (v) £+
1.96VY/2() with M and V as defined previously. For N = 5,10, 25,50
and 100 previous trials, this naive confidence interval had coverage 0.64,
0.61, 0.82, 0.90 and 0.92 respectively. Thus, with a small nurmber of previ-
ous trials, confidence intervals that assume 1 is known without error have
subnominal size and can be seriously misleading. GPHC provide bootstrap
procedures that give confidence intervals with nominal coverage. These in-
tervals ranged from 4% to 293% longer than the naive confidence interval,
however, as the number of previous trials decreased from N =100to N =5.

To illustrate further the loss in precision from the meta-analytic approach,
GPHC discussed a comparison of pravastatin (Z = 1) with placebo (Z = 2)
on a true clinical outcome (T'), namely change in coronary artery diameter
over a two-year period, and on a surrogate (), change in total choles-
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terol. The example was favorable to the meta-analytic approach beca,us.e7
rather than take different trials of similar agents (“statins”) from the 1‘1t-
erature, GPHC chose 10 centers from a single trial, the REGRESS Trial

. (Jukema et al. 1995) as the “previous” studies, and one remaining center
as the “new” study. Because all centers were using the same protocol {mgl
studying the exact same agent, there was probably less “between—trlal.
variability, captured in ¢, than would be expected in a real meta-ana,ly.sm
based on different trials with different agents. Using the clinical endpmpt
T, the “new study” indicated a favorable treatment effect on decrea§es in
coronary diameter of 8179 — oo = 0.0381 mm with 95% confidence 1nte,1:-
val [—0.0138, 0.0900]. Based on the surrogate data only in theﬂ“new study”,
GPHC estimated the true treatment effect as 0.0402 with naive confidence
interval [~0.0552,0.1355] and with bootstrap confidence interval that takfas
variation of ¢ into account: [—0.1346,0.2149]. Thus, there is a huge loss in
precision from relying on S to estimate treatment effects on T'.

9.3 Flexibility of the Marginal Approach

In Section 9.2, we made no mention of the ability of the surrogate to pre-
dict individual outcomes, which can be assessed in each trial by examin-
ing correlations between T and S in ¥11; and 3og;. The quantities 3714
and Y22;, however, only influence estimates of trial-level trea,tm?nt effects
through their impact on estimating p and ¢ in the superpopglatlon model
and through o229 and o440. Especially if all the component trla',ls are large,
Y114y T22i, 0220, and o440 have little influence on superpopulation parame-

ters, and inference on trial-level effects is unrelated to how well S predicts -

T at the individual level. Because the main interest is in estimating .ef—
fects on T at the trial level, and in order to avoid specification of the J(.)lnt
distribution of 7" and S, GPHC adopted a marginal approach to modeling.

Suppose 8,7; represents some feature(s) of the marginal distributi.on'of T
in treatment group z in trial i, such as the mean, and define #g; similarly
for features of the marginal distribution of S. Assume that the components
of 8; = (91Tj , 0155, 0215, Hgsj)T satisfy separate estimating equations

Z Urri;(6113) = 0, Z Uisij(61si) = 0,
j=1 J=1

my m4
Z Uarij (Bar:) = 0, Ussi;(62s:) = 0.

j=1 j=1

We assume that Ui, is functionally independent of 81s;, Oori, and fog;,
and that other estimating equations likewise depend only on the parame-
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ters shown in their arguments. As in GPHC, it is possible to estimate
within experiment variance-covariance matrices ¥;, namely the conditional
covariance of ; given 8;, from the empirical covariances of terms like Urrij
and Uy g;;. Moreover, if 6; is drawn from a normal N (1, ¢) superpopula-
tion, the methods in Section 9.2 can be applied to obtain inference on
do = 0(B170, b210)-

The marginal approach is very flexible. For example, if T and S are di-
chotomous with values 1 or 0, we might choose 6,5 to be the logarithms
of the marginal odds that T = 1 on treatment z in trial ; and f.5; to be
marginal odds that S = 1. Inference on the log odds ratio, g = 6179 — Oa7g
follows directly from (9.1) and (9.2) with allowance for uncertainty in .
The risk difference

do = exp(d170)/[1 + exp(S170)] — exp(fa70)/[L + exp(Baro)]

is non-linear in #1719 and a7, and inference can be based on simulations
from the conditional distribution of 67q given 8gq, with allowance for un-
certainty in ¢, as in GPHC.

Marginal models can also be used for survival data. For example, T%;;
might have a Weibull distribution, P(T,; <y)=1- exp(—Aaiy™= 7).
Likewise, S.;; might have a Weibull distribution with parameters A,g;
and c.g;. The alternative parameters 6,7, = (In(Az1s), @1:)T and 6,9, =
(In(A;s:), @z5:)T might plausibly conform to the multivariate normal dis-
tribution. The distribution of the difference in median survival in groups
with Z = 1 and Z = 2, § = [In(2)/A170]*7° — [In(2)/Aaz0]®" ", can be
estimated by simulations from the conditional distribution of B¢ given /9\50
and %, with bootstrap methods used to account for variability in %, as in
GPHC. Similar methods can be used for piecewise exponential models, as
in GPHC. A subtlety arises if S can censor 7" or T can censor S and the
censoring is informative. Then it may be necessary to posit a joint distrib-
ution for (T, S), rather than work simply with the marginal distributions,
in order to account for informative censoring.

The marginal-level approach can be used for many other types of endpoints
(GPHQ).

The trial-level correlation R2. | in equation (9.3) does not depend on within
individual correlations, namely correlations between T and S calculable
from ¥11; and X49;. It is not surprising, therefore, that marginal models
yield almost identical estimates of R2. , as do corresponding bivariate mod-
els for T and S (Tibaldi et al. 2003, who use the term “univariate” model,
instead of marginal model). This is also an indication that marginal models
capture most if not all of the surrogate information for predicting treat-
ment effects on T' at the trial level. The quantity RZ .., does not account

*
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for uncertainty in 12 As pointed out by GPHC, a more realistic measure
would be 1 minus the ratio of the variance of éy based on fso and 9, with
bootstrap calculations to account for uncertainty in 1), to the variance of g
based only on fii7 and for, again with bootstrap calculations to account
for variability in 7i;7 and figr. Typically, this assessment of the value of
the surrogate will be less optimistic than that provided by R2

‘trial®

9.4 Discussion

The meta-analytic approach provides an empirical alternative to having to
make the strong assumption that T is independent of Z and X given S
in order to estimate effects of a new intervention on T from its effects on
S. Marginal models that allow one to estimate features of the marginal
distributions of T and S in treated and control groups capture most of
the available surrogate information on trial-level effects on T', without the
need for elaborate bivariate models. Bivariate models may be needed in the
presence of informative censoring, however. The ability of the surrogate to
predict intervention effects in a new study depends primarily on how tightly
summary parameters of the marginal distribution of T are related to such
summary parameters for S in a series of studies of interventions similar to
the new intervention.

There is a serious price to be paid in loss of precision from the meta-analytic
approach. Even with a large number of previous trials to estimate super-
population parameters and with a large new experiment on the surrogate,
the precision of the estimated treatment effect on T' in the new study will
typically be much less than from a new study with measurements on T'
itself. This loss of precision is inherent in the irreducible between-study
variation, characterized by ¢. The loss of precision is compounded when
there are 10 or fewer previous studies, because an imprecise estimate of
the parameters degrades the precision of estimated treatment effects on T’
considerably.

Apart from precision, several other limitations of the meta-analytic ap-
proach should be mentioned (see GPHO):
1. there may be disagreement as to which studies are similar enough to

be used in the meta-analysis;

2. published data may not include estimates of 11 and Yoo, requiring
the use of unverified assumptions to estimate ¢;

3. the normal superpopulation model may not be applicable, even after
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transfor.mation of the parameters 6, and more complex methods may
be required for non-normal superpopulations models:

- stopping the new study early on the basis of surrogate information

may restrict the ability of the stud ici i
v to detect unantic iti
of the new treatment; and pated toxeities

. comprlehe'nsllve evaluation of a new treatment may require examining
:}elvera clinical endpoints, so that 7' becomes a vector. In this case
e use of surrogates becomes more complex and less appealing ’

Further methodological research and experience with the method will be

needed to determine the extent to i i
. which meta-analysis can assist i
evaluation and use of surrogate endpoints. Y St n the



